

IPNA teaching course "Microangiopathic Hemolytic Anemia"

El Cairo, December 6th, 2023

Differential diagnosis of aHUS with non-complement-mediated hemolytic uremic síndrome in children

Prof. Gema Ariceta Pediatric Nephrology Hospital Vall d' Hebron Universitat Autonoma Barcelona

Disclosures

- Educational lectures sponsored by Alexion (Astra Zeneca Rare Diseases)
- Advisor (Alexion. Astra Zeneca Rare Diseases)
- Co-chair of the Scientific Advisory Board of the Global aHUS Registry (Alexion)

Outline

- Concept of HUS /TMA and aHUS
- Clinical diagnosis
- Differential diagnosis in pediatrics with noncomplement mediated HUS:
 - Clinical manifestations
 - Labs
 - Age
- Differential diagnosis with other conditions

Clinical diagnosis of Hemolytic Uremic syndrome

HUS is clinically identified by the simultaneous presence of non-immune microangiopathic hemolytic anemia, low platelets and kidney damage (acute kidney injury in most cases)

Blood

- Non-immune microangiopathic hemolytic anemia (Δ LDH, schistocytes, neg Coombs test)
- thrombocytopenia (<150 x 10⁹/L)
- 20% incomplete HUS: w/o hemolysis or low platelets

Kidney biopsy

Kidney

- acute renal injury
- Proteinuria,
- Hypertension

Systemic (extra-renal)

- Central nervous system
- Cardiovascular
- others

Kidney biopsy is not required for diagnosis of HUS in most children (most frequent TAM in pediatrics)

- endothelial swelling and denudation
- mesangiolysis
- double contours of the glomerular basement membrane
- subendothelial accumulation of electron-lucent, flocculent material
- In arteries and arterioles, intramural fibrin, myxoid intimal thickening and concentric myointimal proliferation (onion-skinning) may occur

An etiology-based classification of the various forms of TMA

Loirat et al. Pediatr Nephrol. 2016

TMA Classification

Campistol JM et al. Nefrología, 2015

Thrombotic Thrombocytopenic Purpura (TTP)

TTP is a life-threatening primary TMA that manifests as :

- microangiopathic hemolytic anemia (Δ LDH, schistocytes, negative Coombs test)
- severe thrombocytopenia (< 30 x 10⁹/L)
- CNS, kidney damage (47%), fever manifestations , ...

It is cause by severe deficiency of **ADAMTS13 activity** (**<5-10%**) (a Disintegrin and Metalloproteinase with ThromboSpondin-1 motifs [13th member of the family]), the specific von Willebrand factor (VWF)-cleaving

Incidence: $\approx 4/10^6$ subjects / year

Coppo P, Veyradier A, Médecine/Sciences 2011; Presse Med 2012

Classification of TTP: 2 entities

Onset	Congenital TTP (c-TTP) Upshaw-Schulman syndrome	Immune TTP (i-TTP)
Cause	ADAMTS13 gene (9q31)	Ab against ADAMTS13
Age	Newborn (jaundice) Pregnancy	<2y (22%) 2-9y(16%) 9-16y (62%)
Progressive course	possible (initial isolated thrombocytopenia)	possible
Platelets	< 30.000	<30.000
AKI	Infrequent, mild	Dialysis rarely needed
CNS	35%	67%
CV	Possible	Possible
Family Hx	(AR)	No
relapses	>80% w/o treatment	30%
Elective	Plasma infusion	PEX, corticosteroids Rituximab

Sempre, el pacient primer

Loirat et al. Pediatr Nephrol. 2016

Haemolytic uraemic syndrome

Fadi Fakhouri, Julien Zuber, Véronique Frémeaux-Bacchi, Chantal Loirat

THE LANCET

Lancet, 2017 : S0140-6736(17)30062-4.

Seminar

Differential diagnosis of HUS in pediatrics

incidence $\approx 6.1/10^5$ in <5 y. old

incidence \approx 6-7/10⁶ <18 y. old

- Previously healthy 18 months old girl admitted because right lobar pneumonia and pleural effusion
- Immunizations complete
- Treatment with IV ampicillin with favorable outcome
- After two days:

Poor general condition GI bleeding oligoanuria

• Labs:

Hg: 6,7g/dl; Htc: 19%, 14.000 platelets/ mm3 Serum Cr 2,2 mg/dl; Urea 179 mg/dl

Streptococcus pneumoniae induced HUS

- •≈ 5% of HUS cases in children
- •0.4-0.6% of children with invasive infection caused by S. pneumoniae:
 - pneumonia (pleural effusion) (70%)
 - meningitis (30%)
- Rapid onset (HUS apparent within few days)
- Neuraminidase producer serotypes leading to Thomsen– Friedenreich (T-antigen) exposure (platelets, erythrocytes and endothelial cells)
- Vaccination does not prevent the disease
- •Negative family Hx

Pathogenic mechanisms of S. pneumoniae related to HUS

- The neuraminidase removes neuraminic acid and exposes the T antigen present on red blood cells, platelets, and glomerular endothelial cells
- The T-antigen is recognized by preformed IgM cold antibodies
- Decrease in sialylation of transferrin and IgA1 O-glycans lead to a disruption in Factor H, binding to C3 convertase effectively (thus activates the alternative complement pathway and cell injury)

Fakhouri, Loirat, The Lancet, 2017; de Palma L et al. Pediatric Nephrology 2022.

Streptococcus pneumoniae induced HUS

• Diagnosis:

Bacterial culture (generally) of sterile body fluids, **DAT (Coombs test, +80%)** viral test (respiratory), chest x-ray (pleural effusion is observed in most cases), cytochemistry, LCR culture in cases secondary to meningitis caused by a pneumoccocus.

- Treatment:
 - Supportive

Caution: plasma and unwashed red blood cells or platelets are avoided as plasma contains anti-Thomsen–Friedenreich antibodies (they might enhance agglutination of T-antiT and worsen HUS course)

• No relapses but severe HUS (100% AKI, 40% dialysis) with common long-term sequelae

Intracellular metabolism of cobalamin and affected pathways in cobalamin C (Cbl C) disease

After entering the cell, exogenous cobalamin is converted into Cbl C. MMACHC (methylmalonic aciduria and homocystinuria type C protein) is a putative trafficking chaperone involved in the transition from cobalamin II (Cbl II) to Cbl C.

Ilb C then is converted into 2 active coenzyme derivatives, methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl). MeCbl is required for the conversion of Homocysteine to methionine by the cytoplasmic enzyme methionine synthase (MS), and AdoCbl is a cofactor of the mitochondrial enzyme methylmalonyl coenzyme A (CoA) mutase (MMCoAM), which converts L-methylmalonyl-CoA to succinyl-CoA.

A deficit in these 2 coenzymes lead to hyperhomocysteinemia with low methioninemia or to an accumulation of L-methylmalonyl-CoA, leading to methylmalonic or aciduria, respectively.

Sempre, el pacient primer

Cornec-Le Gall et al. Am J Kidney Dis. 2014

Cobalamin C deficiency clinical manifestations

Growth and habitus	Prenatal growth retardation Postnatal failure to thrive Microcephaly Hydrops fetalis Hydrocephalus Marfanoid habitus Dysmorphic facial features	Blood	Anemia, thrombocytopenia and/or neutropenia, megaloblasts
Central nervous system	Developmental delay Seizures Ataxia Hypotonia Lethargy, progressive encephalopathy Regression, dementia Cognitive impairment ranging from executive dysfunction to severe mental retardation Neuropsychiatric disturbances Subdural hematoma Demyelinating neuropathy Leukoencephalopathy Basal ganglia lesions (less frequent)	Vascular	Fetal dilated cardiomyopathy Congenital heart defects Pulmonary arterial hypertension Left ventricular noncompaction Recurrent venous thrombosis Cor pulmonale or subclinical pulmonary thrombosis Cerebrovascular complications Stroke
Eye	Maculopathy Retinal degeneration Optic atrophy Nystagmus	Renal	HUS Chronic TMA Nephrotic syndrome Renal Failure

Cobalamin-C deficiency related HUS

Cbl C disease is a rare condition with an autosomal recessive mode of inheritance, and it occurs due to mutations in the MMACHC (methylmalonic aciduria and homocystinuria type C protein) gene, which is located on chromosome 1p34.2

Cobalamin-C deficiency related HUS

Clinical characteristics		Diagnosis
Age, years	<0.1 (50%) 1.5-14 (45%) >20 (5 %)	Plasma: High homocysteine levels Low methionine levels (amino-acid chromatography)
Diarrhea	possible in newborn	Urine: methyl-malonic aciduria (urine organic acid chromatography).
Progressive onset	common	Genetics: MMACHC gene direct sequencing analysis
Hematology	Megaloblasts leukocytopenia	In late onset, HUS manifests as pulmonary hypertension
AKI	Hematuria, proteinuria, HTN, CKD	Treatment
CNS	100% in newborn	Vitamin B12
CV	55% in newborn	Betaine
Family Hx	AR	Carnitine Diet (protein restriction)
Relapses	No with vit B12	

Sempre, el pacient primer

modified from Loirat et al, Pediatr Nephrol. 2016

TMA differential diagnosis in children

	С-ТТР	i-TTP	Cbl-C deficiency	Pneumo- ccoccus HUS	STEC-HUS	aHUS
Age, years	newborn (jaundice)	<2 (22%) 2-9 (16%) 9-16 (62%)	<0.1a (50%) 1.5-14a (45%) >20 a (5 %)	< 2	<6m 5% 6m-3 65% >3 30%	newborn-6m (28%) 6m-2 (28%) 2-15 (44 %)
Diarrhea	possible	possible	possible	no	95%	40%
Progressive onset	possible (isolated thrombocytope nia)	possible	possible	no	no	possible
Hematology	Platelets < 30.000x10^9	Platelets < 30.000x10^9	Megaloblasts leukocytopenia	80% Coombs + leukocytosis	Platelets > 30.000x10^9	Platelets >30.000 x10^9
АКІ	Uncommon, mild	Uncommon, mild	Hematuria, proteinuria, HTN, CKD	AKI 100% (dialysis 40%)	AKI 95% (dialysis 50%)	AKI 85% (dialysis)
CNS	≈35%	67%	100% in newborn	Meningitis 30%	20%	16%
CV	Possible	Possible	Possible	no	2-5%	2%
Family Hx	(AR)	No	AR	no	epidemic	14% (AD)
Relapses	>80% w/o treatment	30%	No with B12	no	No	45%
First line treatment	FFP infussion	PEX corticosteroids Rituximab	Diet, B12	Supportive treatment	Supportive treatment	Eculizumab/ Ravulizumab

Sempre, el pacient primer

Modified from Loirat et al, Pediatr Nephrol. 2016

Differential diagnosis of HUS based on age at onset

Loirat, Frémeaux-Bacchi . Orphanet J Rare Dis, 2011

- A previously healthy 3-year-old girl admitted to Emergency Room
- Fever (39°C)
- Vomiting
- Petechiae (face, trunk, gluteus and legs)
- Dark urine
- Physical examination
 - Good condition
 - BP 126/85
 - Generalized petechiae, but absence of meningeal signs
 - No other findings

Case 2. Work-up at presentation

At baseline	4 hours later	2 days later
Hb 10.6 g/dL Platelets 20,000x10 ⁹ /L	Hb 11.2 g/dL, Hct 32.1%, Platelets 3,000x10 ⁹ /L	Hb 6.1 g/dL, Hct 16.7%, reticulocytes 36.6X10 ⁹ /L
Coagulation: normal	D-dimers 5183 ng/mL	Platelets 42,000x10 ⁹ /L (post- transfusion)
mg/dL. AST 1535 UI/L ; ALT 517 UI/L,Albumin 3.8 g/dL	C3 83.8 mg/dL, C4 30.7 mg/dL (normal)	D-dimers 855 ng/mL
LDH 8240 UI/L, Coombs(-) 0.5-1% schistocytes CRP 10.80 mg/dL (NV <0.5) Procalcitonin 4.46 ng/mL (NV <0.1)	Haptoglobin 0.2 g/dL (normal) Chest X-Ray normal	(eGFR 54) AST 210 UI/L, ALT 87 UI/L, GGT 77 UI/L Albumin 2.2 g/dL LDH 6,411 UI/L
PCR: influenza B + (nasopharyngeal secretions)		18–20% schistocytes Bone marrow: rule out baemophagocytic syndrome
Urine dipstick blood ++++ Urine prot/Cr 36.9 mg/mg (normal <0.3)	fundoscopy, and ECG normal	ADAMTS13 activity 88% STEC negative in stools

Case 2. Follow up

- The patient was diagnosed with aHUS triggered by influenza
- C5 blockade with ravulizumab was initiated (on the 3rd day)
- Non complement-mediated aHUS excluded (pneumococcus, MMA)
- After specific treatment, the patient achieved complete remission

Time since ravulizumab	Day 0	Day 4	Day 10
Hg (g/dL)	6.1	6.9	9.2
Platelets (x10 ⁹ /L)	42,000	77,000	335,000
LDH UI/L	6,411	5,299	2,210
Cr (mg/dL) eGFR	0.39 97	0.71 53	0.25 152
AST/ALT	210/87	90/77	27/14
Albumin (g/dL)	2.2	2.1	2.87
Urine prot/Cr (mg/mg)	36.9	4.9	3.6

• BP and proteinuria normalised 2 months later

- Heterozygous pathogenic MCP variant in exon 3, previously described in patients with aHUS¹, that causes MCP protein deficiency [c.493C>T, (p.Pro165Ser, rs759136081)]
- Carrier of the (H3) polymorphism risk of *CFH* in heterozygous
- Carrier of the (MPC ggaac) polymorphism risk of MPC in heterozygous
- Other genetic variants in
 - *C6* gene²
 - C7 gene
 - CR2 gene
 - ITGAX gene³

Other conditions that may mimick HUS in pediatrics

- Sepsis
- Haemophagocytic syndrome
- Secondary TMA

Differential diagnosis between sepsis and HUS

	disseminated intravascular coagulation (DIC)	HUS
platelets	reduced	reduced
Fibrinogen	reduced	normal
fibrinogen/fibrin degradation products (FDPs)	increased	normal
D Dimer	increased	normal
Antithrombin	reduced	normal
Schistocytes	present	present
Haptoglobin	normal	reduced
Bleeding time	prolonged	normal
Blood pressure	hypotension	hypertension

Haemophagocytic syndrome (HPS)

- HPS is a potential life-threating disorder characterised by excessive activation and proliferation of non-malignant macrophages
 - It can be primary or secondary (malignancy, severe infection, or autoimmune disorder)¹⁻⁴

HPS clinical picture

- High grade fever (39°C)
- Hepatosplenomegaly
- Progressive cytopenia
- Liver dysfunction
- Coagulopathy (low fibrinogen)
- Marked hypertriglyceridemia
- Elevated serum ferritin (> 10.000 ug/l)
- Renal involvement is rare: nephrotic syndrome and TMA have been described

Secondary HUS in pediatrics

HUS with coexisting diseases or conditions

- Haemopoietic stem cell transplantation
- Solid-organ transplantation
- Malignancy
- Autoimmune diseases: SLE, APLS, dermatomyositis, others
- Medications:
 - anti-VEGF drugs
 - cyclosporin, tacrolimus, everolimus,
 - gemcitabine,
 - mitomycin
 - IFN α/β , cocaine,
 - quinine,* oxaliplatine
 - gene therapy
- Infection: HIV, H1N1, pneumococcus, CMV, HHV6, parvovirus B19, malaria, Covid, others
- Malignant hypertension
- Pancreatitis
- Pre-existing kidney disease: GC3, ANCA vasculitis, ...
- Pregnancy SLE

Modified from Fakhouri, Loirat, The Lancet, 2017

Goodship TH, et al Kidney Int. 2017 Mar;91(3):539-551

Thank you very much for your attention

Questions?